Manifold Regularization: A Geometric Framework for Learning from Examples
نویسندگان
چکیده
We propose a family of learning algorithms based on a new form of regularization that allows us to exploit the geometry of the marginal distribution. We focus on a semi-supervised framework that incorporates labeled and unlabeled data in a general-purpose learner. Some transductive graph learning algorithms and standard methods including Support Vector Machines and Regularized Least Squares can be obtained as special cases. We utilize properties of Reproducing Kernel Hilbert spaces to prove new Representer theorems that provide theoretical basis for the algorithms. As a result (in contrast to purely graph based approaches) we obtain a natural out-of-sample extension to novel examples and so are able to handle both transductive and truly semi-supervised settings. We present experimental evidence suggesting that our semi-supervised algorithms are able to use unlabeled data effectively. Finally we have a brief discussion of unsupervised and fully supervised learning within our general framework.
منابع مشابه
Manifold regularization and semi-supervised learning: some theoretical analyses
Manifold regularization (Belkin et al., 2006) is a geometrically motivated framework for machine learning within which several semi-supervised algorithms have been constructed. Here we try to provide some theoretical understanding of this approach. Our main result is to expose the natural structure of a class of problems on which manifold regularization methods are helpful. We show that for suc...
متن کاملManifold Regularization: A Geometric Framework for Learning from Labeled and Unlabeled Examples
We propose a family of learning algorithms based on a new form of regularization that allows us to exploit the geometry of the marginal distribution. We focus on a semi-supervised framework that incorporates labeled and unlabeled data in a general-purpose learner. Some transductive graph learning algorithms and standard methods including Support Vector Machines and Regularized Least Squares can...
متن کاملA Mathematical Framework for Deep Learning in Elastic Source Imaging
An inverse elastic source problem with sparse measurements is of concern. A generic mathematical framework is proposed which incorporates a lowdimensional manifold regularization in the conventional source reconstruction algorithms thereby enhancing their performance with sparse datasets. It is rigorously established that the proposed framework is equivalent to the so-called deep convolutional ...
متن کاملLarge-Scale Sparsified Manifold Regularization
Semi-supervised learning is more powerful than supervised learning by using both labeled and unlabeled data. In particular, the manifold regularization framework, together with kernel methods, leads to the Laplacian SVM (LapSVM) that has demonstrated state-of-the-art performance. However, the LapSVM solution typically involves kernel expansions of all the labeled and unlabeled examples, and is ...
متن کاملSpectral Methods for Linear and Non-Linear Semi-Supervised Dimensionality Reduction
We present a general framework of spectral methods for semi-supervised dimensionality reduction. Applying an approach called manifold regularization, our framework naturally generalizes existent supervised frameworks. Furthermore, by our two semi-supervised versions of the representer theorem, our framework can be kernelized as well. Using our framework, we give three examples of semi-supervise...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004